
XQuery Semantics

CSE 232B

1 The XPath Sub-language of XQuery

We consider XPath, the sublanguage of XQuery which deals with specifying paths along which the XML
tree is to be navigated to extract data from it.1

Any expression generated by the following context-free grammar is a valid XPath expression.

(absolute path) ap → doc(fileName)/rp
| doc(fileName)//rp

(relative path) rp → tagName | ∗ | . | .. | text() | @attName
| (rp) | rp1/rp2 | rp1//rp2 | rp[f] | rp1, rp2

(path filter) f → rp | rp1 = rp2 | rp1 eq rp2 | rp1 == rp2 | rp1 is rp2 | rp = StringConstant
| (f) | f1 and f2 | f1 or f2 | not f

The above grammar only helps us check whether an XPath expression p has the correct syntax. But what
is its meaning, i.e. what is the result of extracting from an XML tree the data reachable by navigating along
p? To answer this question, we need to settle the following problem. How can one define the meaning of
any XPath expression without explicitly listing each such expression and, for each possible XML document,
the associated result? Note that this would be an unfeasible approach, as there are infinitely many XPath
expressions, as well as infinitely many XML trees.

The solution is a standard one, adopted from programming language theory. We will define a function
which, applied to any XPath expression p and XML tree rooted at node n, will return the list of nodes
reachable by navigating along p. Recall that we consider two kinds of nodes in the XML tree: element
nodes, and text nodes. Text nodes may be associated to element nodes.

We will use the following functions

1For the sake of simplicity, we will only consider a restriction of the full W3C XPath standard.

1

function returns
[[ap]]A the list of (element or text) nodes reached by navigating from the root along absolute

path ap

[[rp]]R(n) the list of (element or text) nodes reachable from element node n by navigating along
the path specified by relative XPath expression rp.

[[f]]F (n) true if and only if the filter f holds at node n

root(fn) the root of the XML tree corresponding to the document fn

children(n) the list of children of element node n, ordered according to the document order

parent(n) a singleton list containing the parent of element node n, if n has a parent. The empty
list otherwise.

tag(n) the tag labeling element node n

txt(n) the text node associated to element node n

List manipulations We will also use the following notation on list manipulations. < a, b, c > denotes a
list of three entries (a is the first, c the last). <> denotes the empty list, and < e > is the singleton list with
unique entry e.

In the following, l1, l2 are the lists l1 =< x1, . . . , xn > and l2 =< y1, . . . , ym >.

l1, l2

denotes the concatenation of the two lists, i.e. the list < x1, . . . , xn, y1, . . . , ym >.

unique(l1)

denotes the list obtained by scanning l from head to tail and removing any duplicate elements that have
been previously encountered.

For example, < 1, 2, 3 >,< 2, 3, 4 >=< 1, 2, 3, 2, 3, 4 >, and unique(< 1, 2, 3 >,< 2, 3, 4 >) =< 1, 2, 3, 4 >.
The notation < f(x) | x← l1 > is called a list comprehension, and it is shorthand for a loop which binds

variable x in order against the entries of l1, and returns the list with entries given by applying f to each
binding of x:

< f(x) | x← l1 >=< f(x1), . . . , f(xn) >

A list comprehension can have arbitrarily many condition and variable binding expressions. In general,
if c(v1, . . . , vk) is a condition involving variables v1 through vk,

< f(v1, . . . , vk) | v1 ← l1, . . . , vk ← lk, c(v1, v2, . . . , vk) >

is short for the function defined by the following pseudocode fragment:

result := <>

foreach v1 in l1

...

foreach vk in lk

if c(v1,...,vk) then

result := result, <f(v1,...,vk)>

return result

2

We are now ready to define the meaning of an XPath expression.

[[doc(fileName)/rp]]A = [[rp]]R(root(fileName)) (1)

[[doc(fileName)//rp]]A = [[.//rp]]R(root(fileName)) (2)

[[tagName]]R(n) = < c | c← [[∗]]R(n), tag(c) = tagName > (3)

[[∗]]R(n) = children(n) (4)

[[.]]R(n) = < n > (5)

[[..]]R(n) = parent(n) (6)

[[text()]]R(n) = txt(n) (7)

[[@attName]]R(n) = attrib(n, attName) (8)

[[(rp)]]R(n) = [[rp]]R(n) (9)

[[rp1/rp2]]R(n) = unique(< y | x← [[rp1]]R(n), y ← [[rp2]]R(x) >) (10)

[[rp1//rp2]]R(n) = unique([[rp1/rp2]]R(n), [[rp1/ ∗ //rp2]]R(n)) (11)

[[rp[f]]]R(n) = < x | x← [[rp]]R(n), [[f]]F (x) > (12)

[[rp1, rp2]]R(n) = [[rp1]]R(n), [[rp2]]R(n) (13)

[[rp]]F (n) = [[rp]]R(n) 6=<> (14)

[[rp1 = rp2]]F (n) = [[rp1 eq rp2]]F (n) = ∃x ∈ [[rp1]]R(n) ∃y ∈ [[rp2]]R(n) x eq y (15)

[[rp1 == rp2]]F (n) = [[rp1 is rp2]]F (n) = ∃x ∈ [[rp1]]R(n) ∃y ∈ [[rp2]]R(n) x is y (16)

[[rp = StringConstant]]F (n) = ∃x ∈ [[rp]]R(n) x eq StringConstant (17)

[[(f)]]F (n) = [[f]]F (n) (18)

[[f1 and f2]]F (n) = [[f1]]F (n) ∧ [[f2]]F (n) (19)

[[f1 or f2]]F (n) = [[f1]]F (n) ∨ [[f2]](n) (20)

[[not f]]F (n) = ¬[[f]]F (n) (21)

Value-based and Identity-based Equality XPath distinguishes among two types of equality. Two
XML nodes n and m are value-equal (denoted n eq m or n = m) if and only if the trees rooted at them are
isomorphic. That is, if

• tag(n) = tag(m) and

• text(n) = text(m) and

• n has as many children as m and

• for each k, the kth child of n and the kth child of m are value-equal.

In other words, n is a copy of m. n and m are id-equal (denoted n is m or n == m) if and only if they are
identical. That is, a node n is only id-equal to itself. n is not id-equal to a distinct copy of itself. Note that
id-equality implies value-equality, but not viceversa.

2 The XQuery Sub-language for the Project

The W3C XQuery standard contains many bells and whistles which we will abstract from for the sake of
simplicity. For our purposes, the syntax of XQuery is defined as follows:

3

(XQuery) XQ → V ar | StringConstant | ap
| (XQ1) | XQ1, XQ2 | XQ1/rp| XQ1//rp
| 〈tagName〉{XQ1}〈/tagName〉
| forClause letClause whereClause returnClause
| letClause XQ1

forClause → for V ar1 in XQ1, V ar2 in XQ2, . . . , V arn in XQn

letClause → ε | let V arn+1 := XQn+1, . . . , V arn+k := XQn+k

whereClause → ε | where Cond

returnClause → return XQ1

Cond → XQ1 = XQ2 | XQ1 eq XQ2

| XQ1 == XQ2 | XQ1 is XQ2

| empty(XQ1)
| some V ar1 in XQ1, . . . , V arn in XQn satisfies Cond
| (Cond1) | Cond1 and Cond2 | Cond1 or Cond2 | not Cond1

Element and Text Node Constructors We will use the function

makeElem(t, l)

which takes as arguments a tag name t and a (potentially empty) list of XML nodes l and returns a new
XML element node n with tag(n) = t and children(n) a list of copies of the nodes in l (these are deep copies,
i.e. the entire subtrees rooted at these nodes are copied as well. . Similarly,

makeText(s)

takes as argument a string constant s and returns an XML text node with value s.

Variable Scope As in any programming language with variables, we need to define the scope of variables.
We first note that variables can be defined only by for, let and some clauses. We impose the following scoping
rules, which are quite natural for any programming language with block structure.

• The scope of variables bound in a for clause extends to the corresponding (as given by production 8 of
non-terminal XQ above) let clause (if any), where clause (if any) and return clause.

• The scope of the variables bound in a let clause extends to the following where and return clauses (if
the applicable production is no. 8 above), or to the XQ1 (if the applicable production is no. 9 above).

• The scope of the variables bound in a some clause extends to the condition in the satisfies clause.

• Moreover, within any for, let or some clause, every XQi used to bind variable V ari may depend on the
previously defined variables.

A definition of variable v will override within the definition’s scope any prior definition of variable v. For
instance, in a query

for v in XQ1, w in XQ2 let v := XQ3 where Cond return XQ4

any reference to v in Cond and XQ4 refers to the definition using XQ3, while any reference in XQ2 refers
to the definition using XQ1.

4

Evaluating Expressions with Free Variables in a Context Since we intend to evaluate an expression
by evaluating its sub-expressions first, we need to cover the case when the sub-expression mentions free
variables defined outside. To this end, we will record all variable bindings in an auxiliary data structure
called a context, and pass the context as argument to the evaluation function, which will look up prior
variable bindings in the context. Think of a contet as an associative array which relates variables to the
value they are bound to. A context supports two operations:

• {V ar 7→ v}C extends the context C with a new binding for variable Var to value v. This operation
has no side-effect, i.e. it does not change C, instead returning a brand new context which copies from
C all bindings of variables other than Var.

• C(V ar) is the operation of looking up the binding of variable V ar in context C, yielding the value Var
was bound to.2

To support the override rule for variable definitions, we require any context to behave as follows:

({V ar 7→ u}C)(V ar) = u

which implies in particular (for C = {V ar 7→ v}C ′) that

({V ar 7→ u}{V ar 7→ v}C ′)(V ar) = u.

The Evaluation Functions The function evaluating an XQuery expression XQ within a context C is
[[XQ]]X(C), and it returns a list of element and text nodes. The function evaluating a condition Cond within
a context C is [[Cond]]C(C) and it evaluates to a boolean. We define the two functions below.

[[V ar]]X(C) = < C(V ar) > (22)

[[StringConstant]]X(C) = < makeText(StringConstant) > (23)

[[ap]]X(C) = [[ap]]A (24)

[[(XQ1)]]X(C) = [[XQ1]]X(C) (25)

[[XQ1, XQ2]]X(C) = [[XQ1]]X(C), [[XQ2]]X(C) (26)

[[XQ1/rp]]X(C) = unique(< m | n← [[XQ1]]X(C),m← [[rp]]R(n) >) (27)

[[XQ1//rp]]X(C) = unique(< m | n← [[XQ1]]X(C),m← [[.//rp]]R(n) >)(28)

[[〈tagName〉{XQ1}〈/tagName〉]]X(C) = < makeElem(tagName, [[XQ1]]X(C)) > (29)

[[XQ1 eq XQ2]]C(C) = [[XQ1 = XQ2]]C(C) = ∃x ∈ [[XQ1]]X(C) ∃y ∈ [[XQ2]]X(C) x eq y (30)

[[XQ1 is XQ2]]C(C) = [[XQ1 == XQ2]]C(C) = ∃x ∈ [[XQ1]]X(C) ∃y ∈ [[XQ2]]X(C) x is y (31)

[[empty(XQ1)]]C(C) = [[XQ1]]X(C) =<> (32)[[
some V ar1 in XQ1, . . . , V arn in XQn

satisfies Cond

]]
Cn

(C) = ∃v1 ∈ [[XQ1]]X(C0)

. . .

∃vn ∈ [[XQn]]X(Cn−1)

[[Cond]]C(Cn) (33)

where C0 := C, Ci := {V ari 7→ vi}Ci−1, i ∈ [1, . . . , n]

2We shall assume that variables are always defined before being used (this can be easily checked at parsing time) and
therefore define the evaluation only for well-formed XQuery expressions.

5

[[(Cond1)]]C(C) = [[Cond1]]C(C) (34)

[[Cond1 and Cond2]]C(C) = [[Cond1]]C(C) ∧ [[Cond2]]C(C) (35)

[[Cond1 or Cond2]]C(C) = [[Cond1]]C(C) ∨ [[Cond2]]C(C) (36)

[[not Cond1]]C(C) = ¬[[Cond1]]C(C) (37)

Finally, we have

[[
let V ar1 := XQ1, . . . , V arn := XQn

XQn+1

]]
X

(C) = [[XQn+1]]X(Cn) (38)

where C0 := C, Ci := {V ari 7→ [[XQi]]X(Ci−1)}Ci−1, i ∈ [1, . . . , n]

(39)

for V ar1 in XQ1, . . . ,

V arn in XQn

let V arn+1 := XQn+1, . . . ,
V arn+k := XQn+k

where Cond
return XQn+k+1

X

(C) =

< [[XQn+k+1]]X(Cn+k) |
v1 ← [[XQ1]]X(C0),
. . . ,
vn ← [[XQn]]X(Cn−1),
[[Cond]]C(Cn+k) >

(40)

where C0 := C, Ci := {V ari 7→ vi}Ci−1, i ∈ [1, . . . , n]

and Cj := {V arj 7→ [[XQj]]X(Cj−1)}Cj−1, j ∈ [n+ 1, . . . , n+ k]

Notice that the effect of the let construct is simply that of extending the context with bindings for the
variables declred in the construct.

6

